III. Hypothesis Testing

Goal: how to decide:
an event has occurred
a signal is present

We need the ability to make a decision among several choices.

Basic Probability concepts a-priori/posteriori probability Bayes Rule

MAP detection

Bayes detection

Error types

Maximum likelihood criterion

Maximum error probability criterion

MinMax criterion

Neyman-Pearson criterion

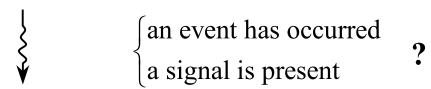
Multiple hypotheses

Composite hypotheses testing

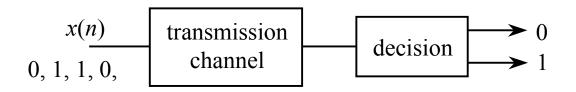
Receiver Operator Characteristic (ROC) curves

III. Hypothesis Testing

Goal: how to decide:



We need the ability to make a decision among several choices.



& Basic Probability Concepts

data transmitted

0

0

- *A priori* probability definition:
- A posteriori probability definition:

- Bayes Rule for discrete events.
- Let $H_1, H_2, ..., H_N$ be a set of mutually exclusive and exhaustive events.

$$P(H_j|A) =$$

 $P(H_j)$: probability of hypothesis H_j

 $P(A|H_i)$: conditional probability of A given

hypothesis H_j

 $P(H_i|A)$: conditional probability that hypothesis

 H_i is true given event (measurement,

data, received signal) A occurred

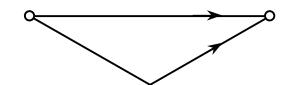
• Special case: 2 hypotheses only $\{H_i\}_{i=1,2}$

transmitted

received

0

$$P\{0\} = 0.7$$
 0



$$P\{1\} = 0.3$$

- $P\{1T|1R\} =$
- $P\{0T|0R\} =$
- $P\{0R\} =$
- $P\{1R\} =$

How to formulate the problem (MAP detection)

- Assume we send a binary signal: $s = \{0,1\}$
- Assume we receive the noisy signal: $y_n = s_n + w_n$
- Goal: how to detect which value of s was received.
- Problem can be formulated as distinguishing between two hypotheses.

$$\begin{cases} H_0: & y_n = w_n \\ H_1: & y_n = 1 + w_n \end{cases}$$

- Four possible outcomes:
- (a)
- (b)
- (c)
- (d)

- How to pick a criterion for making a decision?
 - → choose hypothesis most likely to have occurred based on the observation
 - how to pick the hypothesis most probably true?

- Decision rule:
 - choose H_0 if:

- choose H_1 :

• Decision rule can be rewritten in terms of pdf:

- Example: Assume you are given a transmitted bit $\{0,1\}$; received in noisy environment $\sim N(0,1/9)$
- 1) Compute the decision rule
- 2) Compute the error probabilities

Bayes Detection (binary detection problem)

- Until now no particular weighting given to the two types of errors.
- Note: (1) May be cases where one error type is more harmful than the other.

(example: radar target detection)

- (2) Cost functions may be difficult to generate.
- How to define costs:

 C_{ij} : cost associated with choosing hypothesis H_i when actually hypothesis H_i is true.

- Cost notation:
 - (1) $C_{ii} \ge 0$ (positive cost implies a penalty)
 - (2) usually C_{00} , C_{11} are assumed to be 0

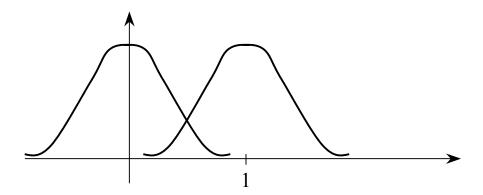
Example: C_{00} : C_{10} : C_{01} :

• How to compute the average cost (risk) of the decision:

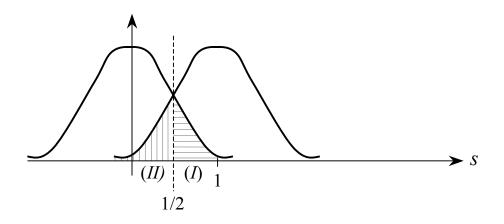
$$C =$$

12

Back to binary signal example {0,1}



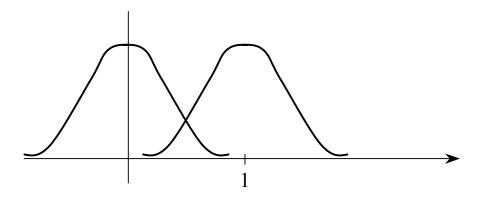
• What types of errors can be made?



Type	II	error
-------------	----	-------

Type II error

Note: it is not possible to reduce both errors simultaneously
 → increase one will reduce the other



Assume you transmit either "m" volts or nothing over a wire.

1) Determine an optimum decision rule to choose between the two hypotheses (based on one sample).

$$H_0: \quad y_n = w_n$$

$$n = 1, ..., N$$

$$H_1: \quad y_n = m + w_n$$

$$w_N \sim N(0, \sigma^2), \text{ iid}$$

- 2) Repeat above when using N samples to make a decision
- 3) Apply above results when

$$C_{00} = C_{11} = 0$$

$$C_{01} = C_{10} = K$$

$$P_0 = P_1 = 0.5$$

4) Now assume you have access to nine independent samples. Determine the optimum decision rule to choose between the two hypotheses.

• Assume you are given N samples of $y \to \{y_n\}_{n=1}^N$

• Assume
$$y_n \sim N(0, \sigma_0^2)$$

or y_n : i.i.d. $\sim N(0, \sigma_1^2)$

Determine an optimum decision rule to choose between the two hypotheses.

- 1) define the generic decision rule
- 2) apply the rule when (based on one sample only)

$$P_0 = P_1 = 0.5$$

 $\sigma_1^2 = 4, \quad \sigma_0^2 = 1$

Assume we have an event which may or may not have occurred

event occurred: data has pdf
$$f_1(y) = \frac{1}{4} \exp\left(\frac{-|y|}{2}\right)$$

event didn't occur: data has pdf $f_0(y) = \frac{1}{4} \exp(-|y|)$

Assume
$$C_{00}=C_{11}=0$$
; $C_{01}=C_{10}=1$; $P_0=P_1=0.5$

- 1) Determine the optimum decision rule
- 2) Determine P_D, P_{FA}, P_M

* Maximum Likelihood Criterion

- Assume we have no prior probability or cost information available.
- What can we do?

Example: Assume you have a constant signal of value m in AWGN $N(0,\sigma^2)$

Compute the decision rule based on one sample

* Maximum Error Probability Criterion

• Used in communications applications where:

$$\begin{cases} C_{01} = C_{10} = 1 \\ C_{00} = C_{11} = 0 \end{cases}$$

• Average decision cost:

Recall:

$$C =$$

- Assume under H_1 we observe: x=m+w and under H_0 , we observe: x=w, $w \sim N(0,\sigma^2)$
- Samples are observed with equal probability
- •Compute the decision rule, based on a one sample basis

- Assume N independent observations of a Gaussian process are available
- •under H_1 we observe: $y \sim N(m_0, 1)$; and under H_0 , we observe: $y \sim N(m_1, 1)$, assume iid & $m_1 > m_0$
- Samples are observed with equal probability
- •Compute the decision rule, based on a one sample basis

- Assume you have *N* independent observations of a Gaussian process.
- Assume variance is either σ_0^2 or σ_1^2 (for *message* 1 or 2).
- Design the detector which allows to distinguish between two variances.

- Assume you have N independent observations y_n of a Gaussian process.
- Assume:

H₀:
$$y_n \sim N(m_0, 1)$$

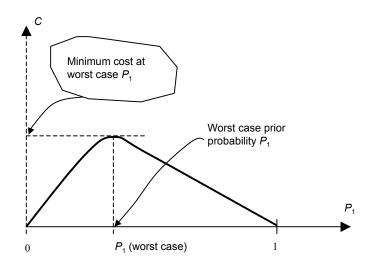
H₁: $y_n \sim N(m_1, 1)$

•Design the Minimum prediction error criterion detector which allows to distinguish between two data types.

❖ Min-Max (Minimax) Criterion

- Used when cost information C_{ij} is available but a priori probability P_0 , P_1 not available.
- Average overall cost:

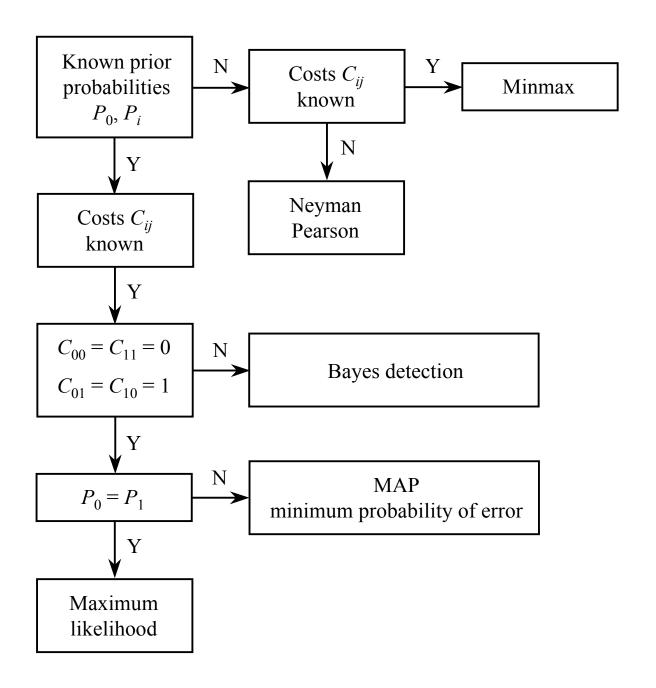
$$C =$$



- Assume N independent observations of a Gaussian process are available
- •under H_1 we observe: $y = 1 + w_n$; $w_n \sim N(0,1)$; and under H_0 , we observe: $y = 2 + w_n$
- Assume $C_{00}=C_{11}=0$; $C_{01}=C_{10}=1$;
- •Compute the min-max decision rule, based on a one sample basis

39

Binary Hypothesis Testing Schemes



Test Name	Data Model Assumptions	Decision Rule	Optimality Criterion
Minimum probability of error (MAP)	 Hypothesis modeled as random events with known pdfs. Known prior probabilities P₀, P₁. 	$\frac{f_1(y)}{f_0(y)} \underset{H_0}{\overset{H_1}{\geq}} \frac{P_0}{P_1}$	Minimize cost $C = P_0 P(D_1 H_0) + P_1 P(D_0 H_0)$
Maximum likelihood	Hypothesis modeled as random events with known pdfs.	$\frac{f_1(y)}{f_0(y)} \underset{H_0}{\overset{H_1}{\geq}} 1$	
Bayes detection	 Hypothesis modeled as random events with known pdfs. Known prior probabilities P₀, P₁. Cost functions C_{ij} known. 	$\frac{f_1(y)}{f_0(y)} \underset{H_0}{\overset{H_1}{\geq}} \frac{P_0(C_{10} - C_{00})}{P_1(C_{01} - C_{11})}$	Minimize cost $C = \sum_{i,j=0}^{1} C_{ij} P(D_i H_j) P(H_j)$
Minmax	 Hypothesis modeled as random events with known pdfs. Cost functions C_{ij} known. 	$\frac{f_1(y)}{f_0(y)} \stackrel{H_1}{\gtrless} \gamma$ where γ defined so that $P_{FA} = \frac{C_{11} - C_{00}}{C_{10} - C_{00}} + \frac{C_{01} - C_{11}}{C_{10} - C_{00}} P_M$ with $P_{FA} = \int_{\gamma}^{\infty} f_0(y) dy$ $P_M = \int_{-\infty}^{\gamma} f_1(y) dy$	Minimize maximum average cost $\frac{\partial C}{\partial P_1} = 0 \Longrightarrow$ $(C_{11} - C_{00}) + (C_{01} - C_{11}) P_M$ $-(C_{10} - C_{00}) P_{FA} = 0$
Neyman- Pearson	Hypothesis modeled as random events with known pdfs.	$\frac{f_1(y)}{f_0(y)} \underset{H_0}{\overset{H_1}{\geq}} \gamma$ with $P_{FA} = \alpha \text{ user specified}$	Maximize probability of detection P_D for a given P_{FA}